Where can we take you next?

Aerospace/Defense and Space

Industrial/Scientific and Medical

Wireless Communications

Custom MMIC Selection Guide
Custom MMIC has been helping customers overcome their toughest design challenges for over a decade, and we now offer over 160 high performance standard MMIC products. As a fabless manufacturer our team of experienced MMIC designers are leveraging a variety of best-in-class processes including GaAs, GaN and InGaP using the world’s most trusted foundries. This combined with our extensive knowledge of the entire RF/Microwave signal chain enables us to make your next design a reality.

Available MMIC Product Categories

- Amplifiers:
 Low Noise, Distributed, Power, Driver,
 Low Phase Noise
- Attenuators:
 Voltage Variable, Digital
- Mixers
- Multipliers
- Phase Shifters
- Switches
- Space Qualified
- Evaluation Boards

Since 2006 Custom MMIC has been recognized as a top tier quality supplier of RF and Microwave products earning us numerous industry and top supplier excellence awards. We continue to exceed our customers expectations and strive to challenge the boundaries of RF and Microwave engineering design.
Low Noise Amplifiers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (GHz)</th>
<th>Gain (dB)</th>
<th>Noise Figure (dB)</th>
<th>Output P1dB (dBm)</th>
<th>Output Psat (dBm)</th>
<th>OIP3 (dBm)</th>
<th>Bias Voltage (V)</th>
<th>Bias Current (mA)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD228/P4</td>
<td>2 - 6</td>
<td>30/28</td>
<td>1.2/1.5</td>
<td>12/13</td>
<td>14</td>
<td>23/25</td>
<td>3-5 / 3-5</td>
<td>45</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD308P4*</td>
<td>2 - 6</td>
<td>31</td>
<td>1.6</td>
<td>12</td>
<td>15</td>
<td>--</td>
<td>3-5</td>
<td>45</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD283/C3*</td>
<td>2 - 6</td>
<td>27</td>
<td>0.6</td>
<td>16</td>
<td>18</td>
<td>26</td>
<td>2-5</td>
<td>42</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD290 (GaN)</td>
<td>2 - 26</td>
<td>12.5</td>
<td>2.3</td>
<td>19</td>
<td>22.5</td>
<td>27</td>
<td>10-28/-3</td>
<td>100</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD276C4 (GaN)</td>
<td>2.6 - 4</td>
<td>14.5</td>
<td>1.2</td>
<td>25.5</td>
<td>28</td>
<td>32</td>
<td>5-28 / -1.5</td>
<td>225</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD185P3</td>
<td>4 - 8</td>
<td>15.5</td>
<td>1.9</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>2-5</td>
<td>75</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD270/P3</td>
<td>4 - 8</td>
<td>15.5</td>
<td>1.8</td>
<td>16</td>
<td>17</td>
<td>30</td>
<td>2-5</td>
<td>60</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD219 (GaN)</td>
<td>4 - 8</td>
<td>23</td>
<td>1.0</td>
<td>18</td>
<td>26</td>
<td>28</td>
<td>5-28 / -2.3</td>
<td>75</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD219C4(GaN)</td>
<td>4 - 8</td>
<td>22.5</td>
<td>1.0</td>
<td>17</td>
<td>25.5</td>
<td>28</td>
<td>5-28 / -2.3</td>
<td>75</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD277C4 (GaN)</td>
<td>5 - 7</td>
<td>20</td>
<td>1.2</td>
<td>26.5</td>
<td>29.5</td>
<td>33.5</td>
<td>5-28 / -1.5</td>
<td>200</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD119P3</td>
<td>5 - 9</td>
<td>22</td>
<td>1.2</td>
<td>11</td>
<td>13</td>
<td>21</td>
<td>2-4.5</td>
<td>30</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD218/C4 (GaN)</td>
<td>5 - 9</td>
<td>22</td>
<td>1.1</td>
<td>21.5</td>
<td>26</td>
<td>30</td>
<td>5-28 / -2.7</td>
<td>80</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD229P4</td>
<td>5 - 11</td>
<td>26</td>
<td>1.5</td>
<td>13</td>
<td>15</td>
<td>24</td>
<td>3-5 / 3-5</td>
<td>45</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD309P4*</td>
<td>5 - 11</td>
<td>27</td>
<td>1.5</td>
<td>13</td>
<td>16</td>
<td>23</td>
<td>3-5</td>
<td>45</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD132/P3</td>
<td>5 - 11</td>
<td>23/21</td>
<td>1.4</td>
<td>10</td>
<td>13</td>
<td>22</td>
<td>2-4.5</td>
<td>30</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD263/P3</td>
<td>5 - 11</td>
<td>23/22</td>
<td>1.4</td>
<td>11</td>
<td>15</td>
<td>23/21</td>
<td>2-4.5</td>
<td>35</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD186P3</td>
<td>6 - 11</td>
<td>18.5</td>
<td>2.1</td>
<td>17</td>
<td>20</td>
<td>28</td>
<td>2-5</td>
<td>78</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD157/P3</td>
<td>6 - 18</td>
<td>26</td>
<td>1.5</td>
<td>11</td>
<td>13.5</td>
<td>23</td>
<td>2-4.5</td>
<td>52</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD264/P3</td>
<td>6 - 18</td>
<td>26</td>
<td>1.5/1.7</td>
<td>13</td>
<td>15</td>
<td>27/24</td>
<td>2-4.5</td>
<td>63</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD194C3</td>
<td>6 - 20</td>
<td>20</td>
<td>2.0</td>
<td>15.5</td>
<td>16.5</td>
<td>26</td>
<td>2-5</td>
<td>120</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD278/C4 (GaN)</td>
<td>8 - 12</td>
<td>15</td>
<td>1.8</td>
<td>28</td>
<td>30</td>
<td>33</td>
<td>5-28 / -1.5</td>
<td>280</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD167P3</td>
<td>8 - 16</td>
<td>16</td>
<td>1.8</td>
<td>11</td>
<td>13</td>
<td>23</td>
<td>2-4</td>
<td>50</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD307P3*</td>
<td>8 - 16</td>
<td>17</td>
<td>2.0</td>
<td>12</td>
<td>14</td>
<td>25</td>
<td>2-4</td>
<td>55</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD189P3</td>
<td>10 - 14</td>
<td>19</td>
<td>1.4</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>1-4 / 1.5</td>
<td>20</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD167</td>
<td>10 - 17</td>
<td>15</td>
<td>2.0</td>
<td>11</td>
<td>13</td>
<td>24</td>
<td>2-4</td>
<td>55</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD160C4</td>
<td>17 - 25</td>
<td>26.5</td>
<td>1.4/1.6</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>1.5-3.5 / 1.5</td>
<td>26</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD298/C4*</td>
<td>17 - 25</td>
<td>27</td>
<td>1.4</td>
<td>8</td>
<td>11.5</td>
<td>17</td>
<td>1.5-3.5 / 1.5</td>
<td>27</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD163/C4</td>
<td>17 - 27</td>
<td>24/23</td>
<td>1.3/1.7</td>
<td>19/18</td>
<td>20/19</td>
<td>26</td>
<td>2-4 / 3</td>
<td>120</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD299/K4*</td>
<td>18 - 40</td>
<td>17</td>
<td>3.5</td>
<td>8</td>
<td>9</td>
<td>17</td>
<td>3 / 3</td>
<td>33</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD162</td>
<td>26 - 34</td>
<td>22</td>
<td>1.7</td>
<td>7</td>
<td>9</td>
<td>14</td>
<td>1-4</td>
<td>25</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD188</td>
<td>26 - 34</td>
<td>20</td>
<td>1.4</td>
<td>6</td>
<td>8</td>
<td>15</td>
<td>1-4 / 2</td>
<td>20</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD190</td>
<td>33 - 45</td>
<td>19</td>
<td>2.1</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>1-4 / 2</td>
<td>25</td>
<td>DIE</td>
</tr>
</tbody>
</table>

Low Phase Noise Amplifiers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (GHz)</th>
<th>Phase Noise (dBc/Hz @10kHz)</th>
<th>Gain (dB)</th>
<th>Output P1dB (dBm)</th>
<th>Output Psat (dBm)</th>
<th>OIP3 (dBm)</th>
<th>Bias Voltage (V)</th>
<th>Bias Current (mA)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD245/C4</td>
<td>6 - 18</td>
<td>-165</td>
<td>18</td>
<td>18</td>
<td>22</td>
<td>29</td>
<td>3-5 / 3</td>
<td>76</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD274/P4</td>
<td>2 - 20</td>
<td>-165</td>
<td>17</td>
<td>19</td>
<td>22</td>
<td>30</td>
<td>5 / 3</td>
<td>86</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD246/C4</td>
<td>8 - 22</td>
<td>-165</td>
<td>17</td>
<td>13</td>
<td>18</td>
<td>25</td>
<td>3-5 / 3</td>
<td>48</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD275/P4*</td>
<td>DC - 26.5</td>
<td>-165</td>
<td>16</td>
<td>18</td>
<td>20.5</td>
<td>29</td>
<td>5 / 3</td>
<td>74</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD247</td>
<td>30 - 40</td>
<td><=-160</td>
<td>13</td>
<td>13.5</td>
<td>15</td>
<td>21</td>
<td>2-4 / 2-3</td>
<td>28</td>
<td>DIE</td>
</tr>
</tbody>
</table>

* = recent release
Distributed Amplifiers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (GHz)</th>
<th>Gain (dB)</th>
<th>Noise Figure (dB)</th>
<th>Output P1dB (dBm)</th>
<th>Output Psat (dBm)</th>
<th>OIP3 (dBm)</th>
<th>Bias Voltage (V)</th>
<th>Bias Current (mA)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD173/P4</td>
<td>DC - 20</td>
<td>15</td>
<td>2</td>
<td>18</td>
<td>20</td>
<td>28</td>
<td>5-8 / 3</td>
<td>78</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD192/C5</td>
<td>DC - 20</td>
<td>19.5</td>
<td>1.9</td>
<td>24.5</td>
<td>26</td>
<td>31</td>
<td>5-8 / -1</td>
<td>200</td>
<td>DIE & 5x5 QFN</td>
</tr>
<tr>
<td>CMD201/P5</td>
<td>DC - 20</td>
<td>12/11</td>
<td>3.4</td>
<td>29/27</td>
<td>30</td>
<td>38</td>
<td>10/-0.5/5</td>
<td>400</td>
<td>DIE & 5x5 QFN</td>
</tr>
<tr>
<td>CMD249/P5</td>
<td>DC - 20</td>
<td>13</td>
<td>3.4</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>10/-0.95</td>
<td>400</td>
<td>DIE & 5x5 QFN</td>
</tr>
<tr>
<td>CMD233/C4</td>
<td>2 - 20</td>
<td>9</td>
<td>4.5</td>
<td>20.5</td>
<td>22</td>
<td>24</td>
<td>3-6</td>
<td>120</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD241/P4</td>
<td>2 - 22</td>
<td>13.5</td>
<td>2.3</td>
<td>21</td>
<td>23</td>
<td>28</td>
<td>5-8 / -0.65</td>
<td>74</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD197/C4</td>
<td>1 - 24</td>
<td>16</td>
<td>2.5</td>
<td>22/24</td>
<td>24/25</td>
<td>32/31</td>
<td>5-8</td>
<td>225</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD240/P4/C4*</td>
<td>DC - 22</td>
<td>15</td>
<td>2.2</td>
<td>19</td>
<td>22</td>
<td>28</td>
<td>5-8/-0.65</td>
<td>80</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD244</td>
<td>DC - 24</td>
<td>18</td>
<td>2.5</td>
<td>25</td>
<td>26.5</td>
<td>32</td>
<td>5-8 / -0.65</td>
<td>185</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD292*</td>
<td>DC - 30</td>
<td>13</td>
<td>3</td>
<td>27</td>
<td>28.5</td>
<td>33</td>
<td>10/-0.6/3.5</td>
<td>250</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD242/K4*</td>
<td>DC - 40</td>
<td>11</td>
<td>4.4</td>
<td>18</td>
<td>20</td>
<td>27</td>
<td>5-8 / -0.32</td>
<td>100</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD304*</td>
<td>DC - 67</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>14</td>
<td>21</td>
<td>3/-0.4</td>
<td>40</td>
<td>DIE</td>
</tr>
</tbody>
</table>

Driver Amplifiers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (GHz)</th>
<th>Gain (dB)</th>
<th>Noise Figure (dB)</th>
<th>Output P1dB (dBm)</th>
<th>Output Psat (dBm)</th>
<th>OIP3 (dBm)</th>
<th>Bias Voltage (V)</th>
<th>Bias Current (mA)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD231/C3</td>
<td>2 - 6</td>
<td>14.5</td>
<td>4.5</td>
<td>13.5</td>
<td>16.5</td>
<td>23.5</td>
<td>3-8</td>
<td>45</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD232/C3</td>
<td>2 - 9</td>
<td>15</td>
<td>4.5</td>
<td>17</td>
<td>18.5</td>
<td>30</td>
<td>5</td>
<td>123</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD191C4</td>
<td>4 - 10</td>
<td>20</td>
<td>4.5</td>
<td>21.5</td>
<td>22.5</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>123</td>
</tr>
<tr>
<td>CMD158</td>
<td>6 - 16</td>
<td>20</td>
<td>3.5</td>
<td>20</td>
<td>21</td>
<td>26</td>
<td>3-6</td>
<td>95</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD158P3</td>
<td>6 - 14</td>
<td>19.5</td>
<td>4</td>
<td>19.5</td>
<td>20.5</td>
<td>26.5</td>
<td>3-6</td>
<td>95</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD158C4</td>
<td>6 - 16</td>
<td>21</td>
<td>4</td>
<td>20</td>
<td>21</td>
<td>26</td>
<td>3-6</td>
<td>95</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD187C4</td>
<td>2 - 20</td>
<td>22.5</td>
<td>6</td>
<td>14/13</td>
<td>16</td>
<td>29</td>
<td>3 / 2</td>
<td>115</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD295/C4*</td>
<td>2 - 20</td>
<td>26.5</td>
<td>3</td>
<td>16</td>
<td>17</td>
<td>28.5</td>
<td>3 / 2</td>
<td>135</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD291*</td>
<td>16 - 24</td>
<td>23</td>
<td>5</td>
<td>25.5</td>
<td>27</td>
<td>32</td>
<td>5/-0.5</td>
<td>250</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD166</td>
<td>20 - 40</td>
<td>9</td>
<td>4.5</td>
<td>17</td>
<td>18</td>
<td>27</td>
<td>2-4</td>
<td>76</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD293*</td>
<td>20 - 45</td>
<td>20</td>
<td>6</td>
<td>26</td>
<td>26.5</td>
<td>31.5</td>
<td>5/-0.45</td>
<td>480</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD199</td>
<td>26 - 35</td>
<td>15</td>
<td>3.5</td>
<td>19.5</td>
<td>21.5</td>
<td>24.5</td>
<td>5</td>
<td>72</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD243</td>
<td>26 - 35</td>
<td>15.5</td>
<td>4.4</td>
<td>21</td>
<td>22.5</td>
<td>26</td>
<td>3-5</td>
<td>90</td>
<td>DIE</td>
</tr>
</tbody>
</table>

Power Amplifiers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (GHz)</th>
<th>Gain (dB)</th>
<th>Noise Figure (dB)</th>
<th>Output P1dB (dBm)</th>
<th>Output Psat (dBm)</th>
<th>OIP3 (dBm)</th>
<th>Bias Voltage (V)</th>
<th>Bias Current (mA)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD169P4</td>
<td>5 - 7</td>
<td>19</td>
<td>6.5</td>
<td>28.4</td>
<td>29.4</td>
<td>37</td>
<td>7 / 3</td>
<td>375</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD170P4</td>
<td>7.5 - 9</td>
<td>30</td>
<td>6.5</td>
<td>28.3</td>
<td>29</td>
<td>34</td>
<td>7 / 3</td>
<td>365</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD216 (GaN)</td>
<td>14 - 18</td>
<td>16</td>
<td>6.5</td>
<td>37</td>
<td>38</td>
<td>43</td>
<td>28 / -3.4</td>
<td>550</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD262 (GaN)*</td>
<td>26 - 28</td>
<td>26</td>
<td>37.5</td>
<td>38.5</td>
<td>28 / -4</td>
<td>400</td>
<td>DIE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMD217 (GaN)</td>
<td>28 - 32</td>
<td>20</td>
<td>36.7</td>
<td>39.3</td>
<td>41</td>
<td>28 / -3.4</td>
<td>580</td>
<td>DIE</td>
<td></td>
</tr>
<tr>
<td>CMD184 (GaN)</td>
<td>0.5 - 20</td>
<td>13</td>
<td>34.5</td>
<td>36.5</td>
<td>42</td>
<td>28 / -2.8/10</td>
<td>700</td>
<td>DIE</td>
<td></td>
</tr>
<tr>
<td>CMD201/P5</td>
<td>DC - 20</td>
<td>12</td>
<td>3.4</td>
<td>29/27</td>
<td>30</td>
<td>38</td>
<td>10/-0.5/5</td>
<td>400</td>
<td>DIE & 5x5 QFN</td>
</tr>
<tr>
<td>CMD249/P5*</td>
<td>DC - 20</td>
<td>13</td>
<td>3.4</td>
<td>30</td>
<td>31</td>
<td>38</td>
<td>10/-0.95</td>
<td>400</td>
<td>DIE & 5x5 QFN</td>
</tr>
</tbody>
</table>

* = recent release
STANDARD PRODUCT SELECTION GUIDE

Switches (Non-Reflective)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Part Description</th>
<th>Freq. (GHz)</th>
<th>Insert. Loss (dB)</th>
<th>Isolation (dB)</th>
<th>Input P1dB (dBm)</th>
<th>Return Loss (dB)</th>
<th>Switch Speed (nS)</th>
<th>Control Voltage (V)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD272P3</td>
<td>DPDT DC - 10</td>
<td>1</td>
<td>43</td>
<td>25</td>
<td>14</td>
<td>4</td>
<td>0/ +5</td>
<td>3x3 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD273P3</td>
<td>DPDT DC - 12</td>
<td>1.7</td>
<td>42</td>
<td>25</td>
<td>13</td>
<td>12</td>
<td>0/ +5</td>
<td>3x3 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD204</td>
<td>SPST DC - 20</td>
<td>5</td>
<td>50</td>
<td>25</td>
<td>17</td>
<td>1.8</td>
<td>0/ -5</td>
<td>DIE</td>
<td></td>
</tr>
<tr>
<td>CMD204C3</td>
<td>SPST DC - 20</td>
<td>1.3</td>
<td>48</td>
<td>25</td>
<td>15</td>
<td>1.8</td>
<td>0/ -5</td>
<td>3x3 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD230</td>
<td>SPDT refl DC - 26</td>
<td>1.4</td>
<td>40</td>
<td>21</td>
<td>16</td>
<td>3.4</td>
<td>0/ -5</td>
<td>DIE</td>
<td></td>
</tr>
<tr>
<td>CMD195C3</td>
<td>SPDT DC - 18</td>
<td>2</td>
<td>37</td>
<td>25</td>
<td>13</td>
<td>1.8</td>
<td>0/ -5</td>
<td>3x3 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD196C3</td>
<td>SPDT DC - 18</td>
<td>1.5</td>
<td>46</td>
<td>23</td>
<td>17</td>
<td>1.8</td>
<td>0/ -5</td>
<td>3x3 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD195</td>
<td>SPDT DC - 20</td>
<td>2</td>
<td>41</td>
<td>25</td>
<td>17</td>
<td>1.8</td>
<td>0/ -5</td>
<td>DIE</td>
<td></td>
</tr>
<tr>
<td>CMD196</td>
<td>SPDT DC - 28</td>
<td>1.75</td>
<td>46</td>
<td>23</td>
<td>15</td>
<td>1.8</td>
<td>0/ -5</td>
<td>DIE</td>
<td></td>
</tr>
<tr>
<td>CMD234C4</td>
<td>SP3T DC - 15</td>
<td>2</td>
<td>40</td>
<td>21</td>
<td>9</td>
<td>66</td>
<td>0/ -5</td>
<td>4x4 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD203</td>
<td>SP4T DC - 20</td>
<td>2.4</td>
<td>39</td>
<td>21</td>
<td>9</td>
<td>66</td>
<td>0/ -5</td>
<td>DIE</td>
<td></td>
</tr>
<tr>
<td>CMD203C4</td>
<td>SP4T DC - 20</td>
<td>2.4</td>
<td>39</td>
<td>21</td>
<td>9</td>
<td>66</td>
<td>0/ -5</td>
<td>4x4 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD302C4*</td>
<td>SP4T DC - 20</td>
<td>1.8</td>
<td>35</td>
<td>21</td>
<td>17</td>
<td>59</td>
<td>0/ -5</td>
<td>4x4 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD235C4</td>
<td>SP5T DC - 18</td>
<td>2.5</td>
<td>40</td>
<td>21</td>
<td>9</td>
<td>66</td>
<td>0/ -5</td>
<td>4x4 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD236C4</td>
<td>SP6T DC - 18</td>
<td>2.5</td>
<td>42</td>
<td>18</td>
<td>9</td>
<td>60</td>
<td>0/ -5</td>
<td>4x4 mm QFN</td>
<td></td>
</tr>
<tr>
<td>CMD215*</td>
<td>SPDT refl DC - 40</td>
<td>2.3</td>
<td>36</td>
<td>19</td>
<td>16</td>
<td>4</td>
<td>0/ -5</td>
<td>DIE</td>
<td></td>
</tr>
</tbody>
</table>

Mixers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Part Description</th>
<th>Freq. LO / RF (GHz)</th>
<th>Freq. IF (GHz)</th>
<th>LO Drive (dBm)</th>
<th>Conver. Gain (dB)</th>
<th>LO-RF Isolation (dB)</th>
<th>LO-IF Isolation (dB)</th>
<th>Input IP3 (dBm)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD251C3*</td>
<td>Fund. Mixer</td>
<td>4 - 8.5</td>
<td>DC - 2.2</td>
<td>+17</td>
<td>-7</td>
<td>45</td>
<td>36</td>
<td>21</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD252C4*</td>
<td>I/Q / IRM</td>
<td>4 - 8</td>
<td>DC - 2.4</td>
<td>+20</td>
<td>-6.5</td>
<td>52</td>
<td>27</td>
<td>25</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD182/C4</td>
<td>I/Q / IRM</td>
<td>6 - 10</td>
<td>DC - 3.5</td>
<td>+15</td>
<td>-6</td>
<td>46</td>
<td>20</td>
<td>18</td>
<td>DIE & 4x4 QFN</td>
</tr>
<tr>
<td>CMD257C4</td>
<td>I/Q / IRM</td>
<td>6 - 10</td>
<td>DC - 3.5</td>
<td>+21</td>
<td>-5.5</td>
<td>40</td>
<td>18</td>
<td>25</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD177/C3</td>
<td>Fund. Mixer</td>
<td>6 - 14</td>
<td>DC - 5</td>
<td>+13</td>
<td>-6.5</td>
<td>43</td>
<td>37</td>
<td>16</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD253C3</td>
<td>Fund. Mixer</td>
<td>6 - 14</td>
<td>DC - 5</td>
<td>+19</td>
<td>-6</td>
<td>43</td>
<td>39</td>
<td>23</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD183C4</td>
<td>I/Q / IRM</td>
<td>7.5 - 13</td>
<td>DC - 4.5</td>
<td>+15</td>
<td>-5.5</td>
<td>43</td>
<td>23</td>
<td>18</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD258/C4</td>
<td>I/Q / IRM</td>
<td>7.5 - 13</td>
<td>DC - 3.5</td>
<td>+21</td>
<td>-5.5</td>
<td>38</td>
<td>20</td>
<td>25</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD178C3</td>
<td>Fund. Mixer</td>
<td>11 - 21</td>
<td>DC - 6</td>
<td>+13</td>
<td>-6</td>
<td>45</td>
<td>45</td>
<td>16</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD254C3</td>
<td>Fund. Mixer</td>
<td>11 - 21</td>
<td>DC - 6</td>
<td>+19</td>
<td>-6</td>
<td>48</td>
<td>44</td>
<td>22</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD179</td>
<td>Fund. Mixer</td>
<td>16 - 26</td>
<td>DC - 9</td>
<td>+13</td>
<td>-6.5</td>
<td>40</td>
<td>48</td>
<td>17</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD179C3</td>
<td>Fund. Mixer</td>
<td>16 - 26</td>
<td>DC - 9</td>
<td>+13</td>
<td>-6.5</td>
<td>40</td>
<td>48</td>
<td>17</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD255C3</td>
<td>Fund. Mixer</td>
<td>16 - 26</td>
<td>DC - 9</td>
<td>+19</td>
<td>-6.5</td>
<td>40</td>
<td>33</td>
<td>24</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD180/C3</td>
<td>Fund. Mixer</td>
<td>20 - 32</td>
<td>DC - 10</td>
<td>+13</td>
<td>-7</td>
<td>36</td>
<td>36</td>
<td>18</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD181*</td>
<td>Fund. Mixer</td>
<td>26 - 45</td>
<td>DC - 12</td>
<td>+17</td>
<td>-6.5</td>
<td>37</td>
<td>29</td>
<td>22</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD261*</td>
<td>Fund. Mixer</td>
<td>30 - 46</td>
<td>5 - 20</td>
<td>+19</td>
<td>-8</td>
<td>30</td>
<td>20</td>
<td>21</td>
<td>DIE</td>
</tr>
</tbody>
</table>

* = recent release
Multipliers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Part Description</th>
<th>Input Freq. (GHz)</th>
<th>Output Freq. (GHz)</th>
<th>Input Power (dBm)</th>
<th>Output Power (dBm)</th>
<th>Fo Isolation (dB)</th>
<th>3 Fo Isolation (dB)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD225/C3</td>
<td>Passive Freq. Doubler</td>
<td>4 - 8</td>
<td>8 - 16</td>
<td>15</td>
<td>3</td>
<td>48</td>
<td>50</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD226/C3</td>
<td>Passive Freq. Doubler</td>
<td>7 - 11</td>
<td>14 - 22</td>
<td>15</td>
<td>5</td>
<td>44</td>
<td>46</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD227/C3*</td>
<td>Passive Freq. Doubler</td>
<td>8 - 15</td>
<td>16 - 30</td>
<td>15</td>
<td>4</td>
<td>40</td>
<td>43</td>
<td>DIE & 3x3 QFN</td>
</tr>
<tr>
<td>CMD214</td>
<td>Active Freq. Doubler</td>
<td>12 - 18</td>
<td>24 - 36</td>
<td>13</td>
<td>17</td>
<td>32</td>
<td>25</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD213</td>
<td>Active Freq. Doubler</td>
<td>15 - 20</td>
<td>30 - 40</td>
<td>17</td>
<td>17</td>
<td>46</td>
<td></td>
<td>DIE</td>
</tr>
<tr>
<td>CMD256</td>
<td>Passive Freq. Doubler</td>
<td>14 - 20</td>
<td>28 - 40</td>
<td>15</td>
<td>0</td>
<td>38</td>
<td></td>
<td>DIE</td>
</tr>
</tbody>
</table>

Phase Shifters

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (GHz)</th>
<th>Number of Bits</th>
<th>Bit Resolu. (deg)</th>
<th>Insert. Loss (dB)</th>
<th>Return Loss (dB)</th>
<th>Phase Error (deg)</th>
<th>Input P1dB (dBm)</th>
<th>Input IP3 (dBm)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD175P4</td>
<td>2 - 4</td>
<td>5</td>
<td>11.25</td>
<td>7</td>
<td>17</td>
<td>+/- 5</td>
<td>24</td>
<td>37</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD176P4</td>
<td>13 - 17</td>
<td>4</td>
<td>22.5</td>
<td>8</td>
<td>14</td>
<td>+/- 5</td>
<td>26</td>
<td>41</td>
<td>4x4 mm QFN</td>
</tr>
<tr>
<td>CMD297*</td>
<td>5 - 18</td>
<td>Analog</td>
<td>N/A</td>
<td>3</td>
<td>10</td>
<td>240 deg range</td>
<td></td>
<td></td>
<td>DIE</td>
</tr>
</tbody>
</table>

Voltage Variable Attenuators

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (GHz)</th>
<th>Insert. Loss (dB)</th>
<th>Attenu. Range (dB)</th>
<th>Input P1dB (dBm)</th>
<th>Input IP3 (dBm)</th>
<th>Return Loss (dB)</th>
<th>Control Voltage (V)</th>
<th>Max. Power (dBm)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD172</td>
<td>18 - 40</td>
<td>1.6</td>
<td>37</td>
<td>15</td>
<td>25</td>
<td>12</td>
<td>0 / -3</td>
<td>30</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD285C3*</td>
<td>DC-20</td>
<td>3.2</td>
<td>33</td>
<td>20</td>
<td>30</td>
<td>11</td>
<td>0 / -5</td>
<td>27</td>
<td>3x3 mm QFN</td>
</tr>
</tbody>
</table>

Digital Step Attenuators

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (GHz)</th>
<th>Number of Bits</th>
<th>Insertion Loss (dB)</th>
<th>Atten. Range (dB)</th>
<th>Input P0.1dB (dBm)</th>
<th>Input IP3 (dBm)</th>
<th>Control Voltage (V)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD279C3*</td>
<td>2 - 18</td>
<td>5</td>
<td>3.5</td>
<td>15.5</td>
<td>27</td>
<td>42</td>
<td>0 / +5</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD280C3*</td>
<td>DC - 18</td>
<td>5</td>
<td>3</td>
<td>15.5</td>
<td>24</td>
<td>42</td>
<td>0 / -5</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD281C3*</td>
<td>DC - 22</td>
<td>2</td>
<td>1.5</td>
<td>6</td>
<td>28</td>
<td>42</td>
<td>0 / -5</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD282C3*</td>
<td>DC - 22</td>
<td>2</td>
<td>1.9</td>
<td>12</td>
<td>23</td>
<td>42</td>
<td>0 / -5</td>
<td>3x3 mm QFN</td>
</tr>
<tr>
<td>CMD279</td>
<td>2 - 30</td>
<td>5</td>
<td>3.5</td>
<td>15.5</td>
<td>27</td>
<td>42</td>
<td>0 / +5</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD280</td>
<td>DC - 30</td>
<td>5</td>
<td>3</td>
<td>15.5</td>
<td>24</td>
<td>42</td>
<td>0 / -5</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD281</td>
<td>DC - 40</td>
<td>2</td>
<td>1.2</td>
<td>6</td>
<td>28</td>
<td>42</td>
<td>0 / -5</td>
<td>DIE</td>
</tr>
<tr>
<td>CMD282</td>
<td>DC - 40</td>
<td>2</td>
<td>1.5</td>
<td>12</td>
<td>23</td>
<td>42</td>
<td>0 / -5</td>
<td>DIE</td>
</tr>
</tbody>
</table>

* = recent release
To boldly go where no MMIC has gone before.

Custom MMIC is ready to answer the call for space qualified MMIC devices

Our commitment to serve RF/Microwave system designers with high performance space qualified MMICs is unprecedented.

We encourage you to explore our growing selection of industry leading MMIC devices from our standard product portfolio. Custom MMIC has an extensive history of successfully screening and qualifying our product to space applications per MIL-PRF-38534, MIL-PRF-38535, NASA INST standards and customer specific requirements. We collaborate with our customers to determine the appropriate screening and qualification based on their specific mission. Our space product screening and qualification are performed in-house and with approved partners. Whether you are looking for a space screened die, hermetically sealed packaged product or non-hermetic packaged product, Custom MMIC is prepared to help you address your qualification requirements.

We have over 160 products which can be space qualified with high confidence.
The Products and Design Resources You Need to Succeed

Custom MMIC understands that your time is valuable and you need technical resources that will deliver the most accurate and helpful information in the shortest time possible.

That’s why the Custom MMIC website has been developed with the design engineer in mind. Clear, clean and concise navigation enables users to quickly find the products best suited for their specific application and access all the relevant design information they need to make an informed engineering decision. With just a few clicks of the mouse, users can use the embedded page filters to customize their own search to help narrow down the list of viable products. Take it for a test drive, we are confident you will keep coming back for more.